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Introduction: Spacecraft instruments today can do 

more than passively collect and transmit data.  Onboard 
data analysis and autonomous response enable the cap-
ture of dynamic or short-lived events as well as increas-
ing overall mission science return.  These capabilities 
have been developed and demonstrated for a variety of 
spacecraft.  This abstract describes capabilities for or-
bital and flyby missions; autonomous science for sur-
face missions is described in [1].   

Orbital or flyby planetary missions may operate at 
great distances from the Earth.  Communications are 
limited by the speed of light as well as the fact that the 
Deep Space Network is a resource that is shared by all 
active planetary missions.  Onboard data analysis can 
enable instruments to exploit gaps between communica-
tion opportunities and make better use of available 
downlink volume by identifying features of interest to 
inform data prioritization, generating compressed data 
summaries, or filtering out poor quality data.  Instru-
ments can also automatically collect additional observa-
tions or alert other instruments to an event of interest 
(cross-instrument coordination).  Next we describe ex-
amples of current instrument science autonomy capabil-
ities and how they could apply to future instruments. 

Surface feature detection:  To detect known fea-
tures of interest, we can train a machine learning classi-
fier with labeled examples and then deploy it to analyze 
new data as it is collected.  For example, we trained a 
classifier to detect tiny sulfur deposits on top of arctic 
glaciers as a proxy for the kind of microbial biosigna-
tures that could potentially manifest on Europa [2].  The 
classifier operates on data collected by Hyperion, a 
pushbroom hyperspectral imager on the EO-1 Earth or-
biter.  The study region (Borup Fiord) is considered one 
of the best Europa analog sites on Earth.  We used the 
trained classifier on EO-1 to monitor the seasonal ap-
pearance and disappearance of sulfur deposits from or-
bit [3] (see Fig. 1). 

Fig. 1. Supraglacial sulfur deposits (marked in yellow) de-
tected by a classifier onboard the EO-1 Earth orbiter [3]. 

We also devised a statistical method that can detect 
and track the seasonal CO2 and water ice caps on Mars 
using THEMIS infra-red images collected by the Mars 
Odyssey orbiter [4].  This method separates image re-
gions into CO2 ice, water ice, and defrosted terrain.  It 
could potentially be used by thermal imagers studying 
icy bodies such as Europa, Ganymede, and Enceladus to 
characterize ice composition and potentially identify 
slightly warmer regions where the ice crust has thinned.  
These areas are of great astrobiological interest.   

Detection of dynamic or short-lived events:  
Onboard analysis of instrument data is perhaps best mo-
tivated when the goal is to detect dynamic or short-lived 
events, such as plumes from Enceladus or Europa.  We 
developed an algorithm to detect and track emissions 
from moons or irregularly shaped bodies (asteroids, 
comets) in real-time to enable fast follow-up and char-
acterization [5].  The algorithm uses a convex hull 
model to distinguish the body under observation from 
any emitted material.  We tested this approach on 756 
Cassini ISS-NAC images of Enceladus, in which it de-
tected 49 real plumes and 22 false positives.  Most of 
the false positives (77%) came from poor quality or non-
limb images which should be filtered out prior to this 
analysis.  We also applied plume detection to 45 EPOXI 
MRI images of comet Hartley 2, which has an irregular 
shape and multiple active jets.  The largest jet was cor-
rectly identified and localized in every image.  Example 
results are shown in Fig. 2. 

Fig. 2. Automated plume detection (cyan x) for Enceladus 
(left) and comet Hartley 2 (right) [5].  Other markers are 
for competing methods that did not perform as well. 

 
Data quality filtering:  Assessing data content prior 

to its transmission to Earth can also yield operational 
benefits by filtering out low-quality data and thereby re-
ducing the volume of data to be transmitted.  The IPEX 
Earth orbiting CubeSat used a trained classifier to deter-
mine cloud cover so that images in which the surface is 
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visible receive higher priority [6].  An example result 
from its onboard deployment is shown in Fig. 3. 

Fig. 3. Onboard classification of IPEX CubeSat Earth im-
age regions into space, limb, cloud, and clear to prioritize 
cloud-free images. [6] 

 
IPEX had only low-resolution commercial cameras 

onboard.  We have re-trained the cloud classifier to op-
erate on high-resolution (30 m/pixel) Hyperion data, 
and we are currently in the process of uploading this al-
gorithm to the EO-1 Earth orbiter.  Imaging instruments 
on a Titan balloon could employ the same technology to 
prioritize images that capture surface features over those 
that are obscured by haze.  

Novelty detection: Training a machine learning al-
gorithm to detect relevant surface or atmospheric fea-
tures requires advance knowledge and several examples 
of the feature of interest.  However, planetary missions 
aim to explore and characterize bodies for which our 
knowledge in incomplete.  They may discover new phe-
nomena or processes that manifest in ways we cannot 
predict in advance.  The ability to detect novel or unex-
pected features is especially relevant to the search for 
life.  We previously developed a novelty detector for 
imaging instruments that calculates the visual salience 
of each region within an image.  Onboard IPEX, it iden-
tified three small lakes in Tibet despite no prior training 
or guidance about bodies of water [7].  Hydrocarbon 
lakes on Titan could be detected in a similar fashion.  
We are uploading this algorithm to EO-1 as well. 

Monitoring:  Some science objectives focus not on 
particular features but instead on continuous monitoring 
of an atmospheric or environmental property.  One ex-
ample is the aerosol opacity of the Mars atmosphere.  
We devised a regression algorithm to estimate the dust 
and water ice content of the atmosphere from THEMIS 

data [8].  Like most imaging instruments, THEMIS is 
able to collect more data than it can downlink.  By run-
ning this algorithm onboard Mars Odyssey, we would 
obtain much greater temporal and spatial coverage of 
the Mars atmosphere instead of being restricted to only 
those frames transmitted to Earth.  We also envisioned 
operational scenarios in which a high opacity detection 
(potentially indicating the formation of a dust storm or 
the presence of a water ice cloud) would trigger the 
transmission of a subset of the full THEMIS data cen-
tered on that location.  The opacity estimation algorithm 
predicted ice opacity with an RMSE of 0.016, well 
within the uncertainty in the reference model (0.040).  
Dust opacity (see Fig. 4) was more challenging (RMSE 
0.087) because atmospheric dust can be easily confused 
with surface dust, but it was sufficiently reliable to de-
tect potential dust storms.  Similar atmospheric moni-
toring would be valuable for a Titan orbiter.   

Lessons learned and recommendations for future 
instruments: Future instrument development will ben-
efit most from autonomous science by integrating it into 
the initial instrument design and test plans to ensure that 
relevant science objectives are addressed and resource 
constraints (memory, computation, response time) are 
met.  It is also vital to characterize the impact of operat-
ing on uncalibrated data and identify any necessary ad-
justments (e.g., we employed an empirical calibration 
for THEMIS data to compensate for temperature drift of 
the focal plane array that corrected ice temperature 
measurements by about 15 K [4]).   
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Fig. 4. Estimation of at-
mospheric dust opacity 
from Mars Odyssey 
THEMIS data as a func-
tion of time of year (Ls) 
and latitude [8].  Re-
gional dust storms ap-
pear from Ls 580-650. 
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